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Abstract: Microscale parameters have significant influence on the macromechanical behaviors of brittle materials in the discrete-element
method (DEM). The rational determination of microparameters is still an open problem to model the failure characteristics of brittle materials.
In this study, a three-dimensional DEM with bonded-particles is adopted to simulate the failure process of brittle materials. Interparticle
friction and softening failure criteria are applied in the DEM simulations. The physical experimental data of sea ice are adopted to calibrate the
DEM results. The influences of the interparticle friction coefficient and the bonding strength of bonded particles on the failure processes of
sea ice are analyzed with the DEM simulations of the uniaxial compressive and flexural strengths of sea ice. The ratio of uniaxial compressive
to flexural strength is used to calibrate the interparticle strengths and friction coefficient of bonded particles in comparison with experimental
data. The relationship between interparticle strength and macrostrength are determined based on the DEM results.DOI: 10.1061/(ASCE)EM
.1943-7889.0000996. © 2016 American Society of Civil Engineers.
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Introduction

Nowadays, the discrete-element method (DEM) with bonded
particles has been applied to simulate the failure process of brittle
materials, such as rock, concrete, and sea ice (Potyondy and
Cundall 2004; Scholtes and Donze 2012; Weerasekara et al. 2013;
Estay and Chiang 2013; Lisjak and Grasselli 2014). In these DEM
simulations, the continuum materials are constructed with two di-
mensional (2D) disks or three dimensional (3D) spheres on the mi-
croscale. The computational parameters of bonded particles on the
microscale, such as particle diameter, normal and shear stiffness, and
tensile and shear bonding strength, are defined firstly in order to cal-
culate the contact force and failure of bonded particles. The micro-
scale computational parameters have significant influences on the
simulated mechanical properties of brittle materials on the macro
scale. In the last decade, the relationship between the micropara-
meters and the simulated macrobehaviors has been investigated
to determine the reliable input parameters in DEM simulations (Po-
tyondy and Cundall 2004; Rojek et al. 2011; Lisjak and Grasselli
2014; Yan et al. 2015; Nitka and Tejchman 2015). Recently, physi-
cal experiments, such as uniaxial compressive, flexural, triaxial,
and Brazilian tests, have been performed to calibrate the micropara-
meters of brittle materials (Cho et al. 2007; Hanley et al. 2011).

The failure behaviors of brittle materials simulated with DEM
are sensitively dependent on the particle size (Potyondy and
Cundall 2004; Kuhn and Bagi 2009; Liu et al. 2012, 2013; Ding

et al. 2014; Tarokh and Fakhimi 2014). With the sensitive analysis
of size effect, the reasonable ratio of the sample size L to the
particle diameter d can be determined. In DEM simulations, the
contact force law and the boundary condition are quite different
for various values of L=d. Thus, the DEM results are sensitively
depended on L=d (Yang et al. 2006). Normally, the simulated
Young’s modulus and macrostrength increase with increasing
L=d until L=d > 30, and then stay about the same (Ding et al.
2014). Recently, the coarse graining method is being introduced
into DEM simulations to obtain high computational efficiency with
good numerical precision (Feng and Owen 2014).

In the contact force model between bonded particles, the normal
stiffness Kn can be defined simply with the diameter and elastic
modulus of particles (Potyondy and Cundall 2004; Ergenzinger
et al. 2012; Wang and Tonon 2010). Normally, the shear stiffness
Ks is determined normally with the ratio of Kn=Ks. Potyondy and
Cundall (2004) firstly set it as 2.5 to model the breakage of rock.
This ratio is still used in the DEM simulation of breakage of rock
materials (Cho et al. 2007; Ali and Bradshaw 2010; van Wyk et al.
2014). Recently, some researchers set this ratio to 1.0 (Hanley
et al. 2011; Metzger and Glasser 2012; Hashemi et al. 2014; Yang
et al. 2014), 2.0 (Yang et al. 2006; Park and Song 2009, 2013;
Huang et al. 2014), 3.0 (Scholtes and Donze 2012; Ding et al.
2014), or 4.0 (Tarokh and Fakhimi 2014). This ratio of normal
to shear stiffness affects both the Poisson’s ratio and the failure
strength of continuum materials on the macroscale (Yang et al.
2006; Tavarez and Plesha 2007). To obtain a reasonable Poisson’s
ratio of brittle materials, the value of this ratio can be more than 5.0,
or even 100.0 (Wang and Tonon 2009, 2010; Rojek et al. 2011;
Azevedo et al. 2015).

The bonding strength between particles on the microscale is an-
other key parameter influencing the failure characteristics of brittle
materials. The relationship between interparticle strength and mac-
rostrength of continuum materials has been examined with DEM
simulations. In the initial DEM investigation of bonded particles for
rock breakage, the ratio of interparticle tensile strength σn

b to shear
strength σs

b is set as 1.0 (Potyondy and Cundall 2004). This value
has been widely used in the DEM simulations of failure process of
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continuum materials (Cho et al. 2007; Park and Song 2009, 2013;
Ali and Bradshaw 2010; Hanley et al. 2011; Rojek et al. 2011;
Metzger and Glasser 2012; Hashemi et al. 2014; van Wyk et al.
2014; Ding et al. 2014; Brown et al. 2014). However, different
values are also used in some simulations (Yang et al. 2006, 2014;
Tarokh and Fakhimi 2014). Moreover, some researchers adopt the
tensile and compressive strengths to model the breakage of bonded
particles, and the compressive strength is normally set 10 times
larger than the tensile strength (Hosseininia and Mirghasemi 2007;
Scholtes and Donze 2012; Ergenzinger et al. 2012). In previous
studies, the interparticle shear bonding strength is independent of
the normal contact force in DEM simulations. Recently, the influ-
ence of normal pressure on shear strength was considered and in-
troduced into the failure criteria of bonded particles based on the
Mohr-Coulomb friction law (Cho et al. 2007; Wang and Tonon
2010; Scholtes and Donze 2012; Estay and Chiang 2013; Nitka
and Tejchman 2015). The rolling friction was also considered to
improve the failure criteria of bonded particles in some DEM sim-
ulations (Wang 2009). Moreover, a tensile softening contact bond
model is also developed to model the progressive failure process of
brittle materials (Hentz et al. 2004; Wang and Tonon 2010; Tarokh
and Fakhimi 2014; Azevedo et al. 2015).

In this study, the DEM with bonded particles are adopted to
simulate the failure process of sea ice material, which behaves as
a typical brittle material under a rapid loading rate. The failure cri-
terion of bonded particles is developed with the consideration of the
interparticle friction effect in order to obtain its reasonable uniaxial
compressive strength and flexural strength. This paper focuses on
the influence of interparticle bonding strength of failure processes
of sea ice without changing the ratios of L=d and Kn=Ks. The ratio
of interparticle tensile to shear strength and interparticle friction
coefficient are determined by the comparison of the DEM results
with the physical experimental data of sea ice.

Failure Criteria of Bonded Particles in DEM

To simulate the mechanical properties of continuum on the macro-
scale, the spherical particles are glued together with parallel bond
model, as shown in Fig. 1. The parallel bond can be envisioned as a
set of elastic springs with constant normal and shear stiffness, uni-
formly distributed over a circular disk lying on the contact plane
and centered at the contact point (Potyondy and Cundall 2004).
A parallel bond is defined by the following five parameters: normal
and shear stiffness, Kn and Ks; interparticle normal and shear

strength, σb
n and σb

s ; and the bonding disk radius, R. Normally,
R is set as the smaller radius of the two bonded particles(Potyondy
and Cundall 2004) or their mean radius (Wang and Tonon 2009,
2010; Nitka and Jejchman 2015). The forces and moments in
the normal direction and the shear direction associated with the par-
allel bond are denoted by Fn, Fs, Mn, and Ms. The maximum ten-
sile and shear stresses acting on the bonding disk are calculated
based on the beam theory as (Potyondy and Cundall 2004)

σmax ¼
−Fn

A
þ jMsj

I
R; τmax ¼

jFsj
A

þ jMnj
J

R ð1Þ

where the variables of A, I, and J = area, moment inertia, and polar
moment inertia of the bonding disk, respectively, and are given by

A ¼ πR2; J ¼ 1

2
πR4; I ¼ 1

4
πR4 ð2Þ

If the maximum tensile stress exceeds the normal strength, or
the maximum shear stress exceeds the shear strength, the parallel
bond breaks. To dissipate the fracture energy generated in the
breaking process of bonded particles, a softening bond model is
implemented taking into account the elastic damage (Onate and
Rojek 2004; Paavilainen et al. 2011; Tarokh and Fakhimi 2014).
In this softening model, the normal stiffness at contact point is
assumed to decrease linearly after the peak tensile force, and a soft-
ening stiffness Kns is introduced into the force-displacement rela-
tionship, as shown in Fig. 2(a). Here, the softening stiffness is set
as Kns ¼ 0.5Kn.

In this study, the normal tensile strength σb
n is set as a constant,

while the shear strength is determined by the bonding strength in
the shear direction and the friction induced by the normal stress
following the Mohr-Coulomb friction law. The sliding friction co-
efficient between the two bonded particles, μb, is introduced here.
Thus, the shear strength between two bonded particles considering
the normal stress can be written as

τb ¼ σb
s þ μbσn ð3Þ

where τb = shear strength between bonded particles under the in-
fluence of normal stress; σb

s = interparticle shear bonding strength;
μb = interparticle friction coefficient between the bonded particles;
and σn = normal compressive stress of the bonded particles. Con-
sidering the contact area of the two bonded particles, the shear fail-
ure criterion is plotted as shown in Fig. 2(b). After the breakage of
bonded particles, the interparticle cohesion is set to be zero, and the
friction coefficient is set as μ for the separated particles.

In most previous investigations on failure criteria of bonded
particles, the friction coefficient is μb ¼ 0.0. This means the inter-
particle shear strength is independent of the normal compressive
stress. Recently, more researchers have paid attentions on the in-
fluence of normal compressive on the failure strength in tangential
direction (Wang and Tonon 2010; Scholtes and Donze 2012; Nitka
and Tejchman 2015). The ratio of cohesion to normal strength of
bonded particles can be set a constant and written as

α ¼ σb
s

σb
n

ð4Þ

The ratio α can be set as 1.0 or other values (Potyondy and
Cundall 2004; Yang et al. 2006; Cho et al. 2007; Yang et al. 2014;
Tarokh and Fakhimi 2014). In this study, the authors analyze its
influence on the failure characteristics of brittle materials.

Considering the contact area of the bonded particles, the shear
and normal stress can be switched to the force. Thus, Eq. (3) can be
characterized as shown in Fig. 2(c). The maximum shear forceFig. 1. Bonding model between two spherical particles

© ASCE C4016010-2 J. Eng. Mech.
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is determined by the normal force, cohesive force, and bonding
friction coefficient (Hentz et al. 2004; Wang and Tonon 2010;
Scholtes and Donze 2012; Nitka and Tejchman 2015).

In the tensile softening failure criterion, the normal stiffness
changes with the damage degree between the two bonded particles
during the progressive failure process (Tarokh and Fakhimi 2014).
Here, the normal contact force in the damaged bond is given by

f ¼ Knfun ¼ ð1 − ωÞKnun ð5Þ

where Knf = elastic damaged secant modulus; ω = scalar damage
variable; and un = normal overlap between two contact particles.
The scalar damage variable ω is a index of material damage. For the
undamaged state, ω ¼ 0; for a damaged state, 0 < ω ≤ 1. The scalar
damage variable ω can be written as

ω ¼ ψðunÞ − 1

ψðunÞ
ð6Þ

where ψðunÞ = function of the normal relative displacement. For a
linear strain-softening criterion, ψðunÞ is defined by

ψðunÞ ¼

8>>><
>>>:

1 for un ≤ u0
K2

nun
ðKns þ KnÞFmax

n − KnsKnun
for u0 ≤ un ≤ umax

∞ for un ≥ umax

ð7Þ

where Fn
max ¼ Aσb

n; in which A = contact area of the two bonded
particles; and A ¼ πR2.

A simple contact force-shear displacement law with damage can
be introduced in the shear direction. The stiffness and the strength
in shear direction decrease according to the damage state in the
normal direction, and the reduction factor can be defined by

λ ¼ σb 0
n

σb
n

ð8Þ

where σb 0
n = residual tensile strength of the bonded particles; and

σb
n = initial cohesion of the bonded particles. When the contact

bonds break due to damage, the Coulomb friction law is consid-
ered between the contact particles [Fig. 2(b)]. In this figure,
Fs
max ¼ Aλσb

s .
The normal and shear stiffness between the two bonded particles

can be defined with the mean radius of the bonding disk and the
elastic modulus (Potyondy and Cundall 2004; Azevedo et al. 2015).
The stiffness can be determined with (Wang and Tonon 2010; Nitka
and Tejchman 2015)

Kn ¼ E
2RARB

RA þ RB
; β ¼ Kn

Ks
ð9Þ

where the parameter β has a close realation with the Poisson’s
ratio (Tavarez and Plesha 2007; Weerasekara et al. 2013). In this
study, β ¼ 2.0.

DEM Simulations and Physical Experiments of
Failure Processes of Sea Ice

DEM Simulations of Failure Processes of Sea Ice

Sea ice exhibits the mechanical properties of brittle material under
rapid loading rate (Timco and Weeks 2010; Ji et al. 2011; Renshaw
et al. 2014). In this study, the sea ice samples are constructed with
the hexagonal close packing (HCP) pattern of spherical particles in
three dimensions. In fact, the particles can be packed with different
methods besides HCP, such as face-centered cubic (FCC) packing
or random packing. For various packing patterns, the mechanical
behaviors of sea ice are quite different in DEM simulations (Grof
and Stepanek 2013; Liu et al. 2012). Moreover, the loading direc-
tion also has obvious influence on the failure process since the
anisotropic behavior of sea ice samples. In field and laboratory tests
of sea ice mechanical properties, the samples in uniaxial compres-
sive tests and three-point bending tests are designed as a × a ×
H ¼ 100 × 100 × 250 mm [as shown in Fig. 3(a)] and b × b ×
L ¼ 75 × 75 × 500 mm [as shown in Fig. 4(a)], respectively (Ji
et al. 2011). In the generations of the DEM samples with regular
packing of spherical elements, the particle diameters are set asD ¼
20 and 16 mm for the uniaxial compression and three-point bend-
ing tests, respectively. The particle sizes are different in the two
tests since the sea ice samples in DEM simulations are constructed
to compare well with the physical tests. Here, the influence induced
by the particle size difference can be ignored (Yang et al. 2006;
Ding et al. 2014). The sea ice samples are constructed with the
sizes of a1 × a2 ×H1 ¼ 100 × 75 × 228.6 mm for the uniaxial

(tension)

(compression)

un

Kn

Kn

us

µFn

u0 umax

Knf

Kns

Fn

A

Fn 

Fs 

(tension)

(compression)

(softening)

(tension)(compression)

A

(overlap) (moving away)

(break)

(break)

(bonded contact)

(debonded contact)

(a)

(b)

(c)

Fig. 2. Relationship in the softening contact bond model: (a) normal
force and normal displacement; (b) shear force and shear displacement;
(c) shear force and normal force
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compression test with 375 particles [as shown in Fig. 3(b)] and
b1 × b2 × L1 ¼ 52 × 60 × 500 mm for the three-point bending test
with 1,075 particles [as shown in Fig. 4(b)]. In the uniaxial com-
pressive test, the bottom plate is fixed in the vertical direction and
the top plate is given a constant downward loading speed. The fric-
tion coefficient between sea ice particles and loading plates are set
as 0.1 here. In the three-point bending test, a constant downward
vertical load is applied at the top center of the beam with a constant
velocity. Two supporting columns and one loading column, which
has contact with several particles, are applied on the surface of sea
ice sample, as shown in Fig. 4(b). Some computational parameters
are listed in Table 1.

For the uniaxial compression and three-point bending tests, the
maximal loads are determined to calculate the uniaxial compressive
and flexural strengths with

σc ¼
Pmax

a1a2
ð10Þ

σf ¼ 3

2

PmaxL1

b1h21
ð11Þ

where Pmax = maximum loading during the tests; the other param-
eters are shown in Figs. 3 and 4.

Figs. 5 and 6 show the failure process of the sea ice sample si-
mulated with DEM under uniaxial compression and three-point
bending. The results show the sea ice sample breaks in a shear
failure pattern in compression test and breaks in a tensile fracture
pattern in bending test. From the stress-strain curve of the compres-
sion test plotted in Fig. 7, the uniaxial compressive strength can be
obtained with the maximum normal stress. For the three-point
bending test, the flexural strength can be determined from the maxi-
mal normal stress, as shown in Fig. 8. For the two tests simulated
with DEM described earlier, the uniaxial compressive strength
σc ¼ 2.55 MPa, and the flexural strength σf ¼ 1.59 MPa.

Physical Experiments of Sea Ice Strength

To validate the preceding DEM results the physical experimental
data of sea ice in the Bohai Sea are adopted here. The Bohai
Sea locates in 37°0′N∼41°0′N in latitude and 117°30′E∼122°30′E
in longitude. In the past several winters, the physical and mechani-
cal properties of the sea ice have been measured in field and labo-
ratory tests. Here, the uniaxial compressive strength and the
flexural strength will be compared with the numerical results simu-
lated with DEM. The macromechanical properties of sea ice, such
as the uniaxial compressive strength and the flexural strength, are
affected with the ice temperature, salinity, and loading rate (Timco
and weeks 2010; Ji 2011). The brine volume (Vb) of sea ice can be
written as a function of ice temperature and salinity, and is normally
adopted to analyze the comprehensive influence of temperature and
salinity (Timco and weeks 2010).

In the physical experiments of sea ice strengths, the samples are
the same as these used in the DEM simulations. i.e., a × a ×H ¼
100 × 100 mm × 250 in uniaxial compressive tests and b × b ×
L ¼ 75 × 75 × 500 mm in three-point bending tests. Under vari-
ous brine volumes, the measured uniaxial compressive strength
(σc) and flexural strength (σf) are plotted in Fig. 9. Here, the in-
fluence of loading rate is ignored since sea ice obviously performs
the mechanical properties of brittle materials under rapid loading.
In these physical experiments, 431 samples for uniaxial compres-
sion and 251 samples for three-point bending tests were carried out,
respectively. From Fig. 9, it can be found that the measured sea ice
strengths appear obvious randomness under the influence of ice

(a)

(b)

P

H a

a

a

a

Fig. 3. Demonstration of the uniaxial compressive test of sea ice:
(a) schematic diagram of sample; (b) numerical sample in DEM
simulation

Fig. 4. Demonstration of the three-point bending test of sea ice:
(a) schematic diagram of sample; (b) numerical sample in DEM
simulation

Table 1. Computational Parameters in the Discrete-Element Simulation of
Sea Ice

Parameter Symbol Unit Value

Elastic modulus E GPa 1.0
Ice density ρ kg=m3 920
Interparticle tensile bonding strength σb

n MPa 0.74
Interparticle shear bonding strength σb

s MPa 0.5σb
n

Normal stiffness Kn N=m πDE=4
Shear stiffness Ks N=m 0.5Kn
Softening normal stiffness Kns N=m 0.5Kn
Friction coefficient between bonded particles μb — 0.0
Friction coefficient between separated particles μ — 0.1
Friction coefficient between particle and
loading plates

μw — 0.1

Particle diameter in uniaxial compression test D mm 16, 20

© ASCE C4016010-4 J. Eng. Mech.
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crystal structure. Since the size of ice crystal is much smaller than
the particle size in DEM simulations, the influence of ice crystal on
the macrostrength of sea ice cannot be considered well here. Thus,
the statistical features of sea ice strengths are adopted to validate the
DEM results. The maximum and mean values of σc are 5.98 MPa
and 2.56 MPa, and the maximum and mean values of σf are
2.42 MPa and 1.08 MPa. Thus, the ratios of σc=σf are 2.47 and
2.37 for the maximum and mean values. From the numerical sim-
ulation of Figs. 7 and 8, the ratio σc=σf ¼ 1.60. Besides the uni-
axial compressive and flexural strengths, their ratio is also a very
important parameter to validate the DEM simulation (Wang and
Tonon 2010; Tarokn and Fakhimi 2014). In the following sections,

Fig. 5. Uniaxial compressive failure process of sea ice simulated with DEM; particle color represents the velocity of particles

Fig. 6. Three-point bending failure process of sea ice simulated with
DEM; particle color represents the normal interparticle contact force

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.000 0.001 0.002 0.003

n
(M

Pa
)

Fig. 7. Axial normal stress versus axial normal strain ice in compres-
sive failure process of sea simulated with DEM

0.0
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1.0
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2.0

0.0 10.0 20.0 30.0 40.0
m
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Pa
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Fig. 8. Maximum normal stress versus vertical displacement in three-
point bending failure process of sea ice simulated with DEM
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f  (M
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c

f

Fig. 9. Physical experimental results of uniaxial compressive strength
and flexural strength of sea ice in the Bohai Sea
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the influence of interparticle strength and friction coefficient on the
ratio of σc=σf will be investigated.

Relationship between Interparticle Bonding Strength
and Macrostrength of Sea Ice in DEM Simulations

Influences of Interparticle Bonding Strengths on
Failure Characteristics of Sea Ice

In the DEM simulations of sea ice compressive and flexural
strengths presented earlier, the interparticle shear strength of
bonded particles is set as constant without the consideration of the
effect of normal pressure since the friction coefficient between
bonded particles μb ¼ 0.0. The simulated strength ratio of sea
ice σc=σf ¼ 1.60, which is much smaller than that given in the
physical data. The DEM simulations with bonded particles show
the breaking pattern of sea ice sample exhibits shearing failure
in uniaxial compression test (as shown in Fig. 5), and tensile failure
in bending test (as shown in Fig. 6). Therefore, the simulated ratio
of σc=σf can be increased with increasing the interparticle shear
strength or decreasing the interparticle tensile strength. Here, the
uniaxial compression and bending tests of sea ice samples are

simulated with various interparticle tensile and shear strengths
by σb

n and σb
s ¼ 0.1, 0.25, 0.5, 0.75, 1.0, 1.5, and 2.0 MPa, respec-

tively. The sample sizes are same as the DEM simulation given
earlier, and the computational parameters used are listed in Table 1.
With various interparticle tensile and shear strengths, the simulated
contours of macrocompressive and flexural strengths are plotted in
Figs. 10(a and b), and the contours of the macrostrength ratio of
σc=σf are plotted in Fig. 10(c).

Figs. 10(a and b) show that both of the compressive and flexu-
ral strengths increase with increasing interparticle shear and ten-
sile bonding strengths simultaneously. Increasing shear or tensile
strength only, the simulated macrostrength has different depend-
ency on the other interparticle strength. Two aided straight lines
added from the origin of coordinates in each figure. In the region
below the bottom line or above the top line, the contours approach
horizontal or vertical trends. This indicates that the macrostrengths
simulated with DEM are independent of the interparticle shear or
tensile strength. Increasing the interparticle shear and tensile
strengths together, the macrostrengths obviously increase. In the
region below the bottom line, macrostrength is independent of
the interparticle tensile strength, and is dominated by microshear
strength. Under this situation, interparticle bonding is broken via
shear failure criteria since the weakness of microshear strength.

Fig. 10. Contour of the simulated macrostrengths of sea ice and strength ratio when μb ¼ 0.0: (a) uniaxial compressive strength; (b) flexural strength;
(c) ratio of uniaxial compressive to flexural strength
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In the other hand, in the region above the top line, macrostrength is
dominated by microtensile strength. Interparticle bonding is broken
normally via tensile failure criteria given the weakness of micro-
tensile strength.

From the contour of the macrostrength ratio of σc=σf [as
shown in Fig. 10(c)], the ratio increases from 1.2 to 2.1 with
increasing interparticle shear strength. But the maximum ratio
simulated here is still smaller than that obtained in physical ex-
periments, as shown in Fig. 9. In the earlier DEM simulations,
the interparticle friction coefficient between bonded particles is
ignored. When considering the influence of interparticle friction
on the shear criterion, as shown in Fig. 2(c), the interparticle shear
strength will be increased.

Influences of Interparticle Friction of Bonded Particles
on Failure Characteristics of Sea Ice

The interparticle friction coefficient of bonded particles μb has
significant influence on the macromechanical properties in DEM
simulations (Wang and Tonon 2010; Estay and Chiang 2013; Nitka
and Tejchman 2015). Here, the value of μb is set as 0.1, 0.2, and
0.3 to simulate the uniaxial compressive and three-point bending
tests. The simulated contours of compression strength (σc), flexural
strength (σf), and ratio of σc=σf are plotted in Figs. 11–13. Similar
to the results simulated with μb ¼ 0.0, the macroscale uniaxial
compressive and flexural strengths increase with increasing
interparticle shear and tensile strength. In each figure, two aided

straight lines are added from the origin of coordinates to show
the contour distributions. In the region below the bottom line or
above the top line, the contours are parallel to the horizontal or
vertical coordinate. This means macrostrength is not sensitive
to microbonding strength in those domains.

Comparing the uniaxial compressive strength σc simulated with
various interparticle friction μb [as shown in Figs. 10(a), 11(a),
12(a) and 13(a)], it can be found that σc increases with the increase
of μb. The angle between the two aided straight lines decreases with
increasing μb, and close to the line of σb

n ¼ σb
s . This indicates that

the interparticle friction plays a more significant effect on the com-
pressive strength. But from the contours plotted in Figs. 10(b),
11(b), 12(b) and 13(b), the flexural strength is independent of the
interparticle friction since the interparticle bonding disks are bro-
ken via tensile failure in the bending tests.

From the contours of σc=σf simulated with μb ¼ 0.1 in
Figs. 11(c), it can be found that the ratio of σc=σf increases with
increasing shear bonding strength or decreasing tensile strength.
This trend is similar as that simulated with μb ¼ 0.0 in Fig. 10(c).
However, from the contours simulated with μb ¼ 0.2 and 0.3 in
Figs. 12(c) and 13(c), the ratio has a high value in the zone close
to σb

n ¼ σb
s . The ratio of σc=σf is close to 2.6 and 3.5 when μb ¼

0.2 and 0.3, respectively. The mean ratio is 2.37 in the physical
experiments of sea ice in the Bohai Sea. Therefore, the reasonable
parameter for the DEM simulation of sea ice failure process can
be obtained as μb ¼ 0.2, and σb

n ¼ σb
s . Based on the simulated

data when σb
n ¼ σb

s , the relationship between interparticle friction

Fig. 11. Contour of the simulated macrostrengths of sea ice and strength ratio when μb ¼ 0.1: (a) uniaxial compressive strength; (b) flexural strength;
(c) ratio of uniaxial compressive to flexural strength
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coefficient and strength ratio of σc=σf can be obtained as shown in
Fig. 14, and can be written as

σc

σf
¼ 6.59μb þ 1.57 ð12Þ

With Eq. (12), the interparticle friction coefficient can be deter-
mined for a given ratio of σc=σf . The macrostrength of sea ice is
affected by the ice brine volume, which is a function of temperature
and salinity, ice crystals, and loading rate. Therefore, the interpar-
ticle strength on the microscale can be defined according to the
macrostrength of sea ice material considering the factors given
earlier.

Relationship between Interparticle Strength and
Macrostrength of Sea Ice

When the interparticle tensile and shear strengths are set as the
same value, i.e., σb ¼ σb

n ¼ σb
s , the relation between micropara-

meters and macrostrengths of sea ice can be determined with the
DEM results. Under various interparticle friction coefficients (μb),
the simulated uniaxial compressive strength is plotted in Fig. 15(a).
It shows the uniaxial compressive strength (σc) increases linearly
with interparticle bonding strength (σb) when μb is constant. For

each line of a given μb, the slope is the ratio of σc=σb. Here, this
ratio is plotted versus μb in Fig. 15(b). The relationship between
interparticle friction of bonded particles, interparticle strength, and
uniaxial compressive strength is

σc

σb
¼ 13.27μb þ 3.19 ð13Þ

where σb = interparticle tensile and shear strength.
The simulated flexural strength (σf) under various micro-

strengths and interparticle friction coefficients are plotted in
Fig. 16(a). It shows the value of σf is independent of μb, and in-
creases linearly with the increase of σb. The relationship between
σf and σb is plotted in Fig. 16(b) and can be written as

σf ¼ 2.03σb ð14Þ

From Eqs. (13) and (14), it can be found that μb only affects the
uniaxial compressive strength (σc), and the flexural strength (σf) is
not sensitive on μb. In uniaxial compression tests, the sea ice sam-
ple fractures in a shear pattern accompanying the shear failure of
interparticle bonding. The interparticle shear strength τb is domi-
nated by both of μb and σb, as shown in Eq. (3). In bending tests,
the bonding disks mainly break in a tensile pattern, and tensile
strength is independent of μb.

Fig. 12. Contour of the simulated macrostrengths of sea ice and strength ratio when μb ¼ 0.2: (a) uniaxial compressive strength; (b) flexural strength;
(c) ratio of uniaxial compressive to flexural strength
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Conclusions

A three-dimensional discrete-element method (DEM) with bonded
particles is adopted to simulate the failure process of brittle materi-
als. The tension softening failure criterion considering the influence
of interparticle friction of bonded particles is developed to model
the uniaxial compression and three-point bending tests of sea ice

samples. The simulated macrostrength, especially the ratio of
uniaxial compressive to flexural strength, is compared with the
physical experimental data of the Bohai sea ice. The influences of
microbonding strength and interparticle friction coefficient on the
macrostrength of sea ice are discussed based on the DEM results.
The simulated macrostrength increases with increasing both the
interparticle shear and tensile strengths. The increase of the inter-
particle friction coefficient of bonded particles increase the macro-
scale uniaxial compressive strength, and does not affect the flexural
strength of sea ice. When the microscale tensile and shear strengths
are set the same, and the interparticle friction is set as 0.2, the rea-
sonable macrostrengths of sea ice can be simulated with DEM. The
relationship between the macrostrength of continuum material and
the microstrength of bonded particles are determined.

In this study, the influence of interparticle bonding strengths
are analyzed in terms of the failure processes of sea ice with DEM
simulations. All of the other parameters are fixed in the DEM sim-
ulations, such as the ratio of shear to normal stiffness, ratio of sam-
ple to particle size, interparticle friction of unbonded particles, and
packing pattern of particles. The parameters used in this paper can
be adopted to simulate the brittle failure process of sea ice. Even
so, the influences of temperature and salinity, ice crystals, and load-
ing rate are not considered in the present work. In the close future
study, the interbonding strength will be defined as a function of
loading rate, temperature, and salinity. The anisotropic properties

Fig. 13. Contour of the simulated macrostrengths of sea ice and strength ratio when μb ¼ 0.3: (a) uniaxial compressive strength; (b) flexural strength;
(c) ratio of uniaxial compressive to flexural strength

Fig. 14. Relationship between interparticle friction coefficient μb and
strength ratio of σc=σf
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of sea ice under the influence of a crystal structure will be also
considered. But for other materials, such as rock, the influence
of microparameters on particle scale will be investigated compre-
hensively to obtain rational parameters in DEM simulations.
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